CS 4530: Fundamentals of Software Engineering

Module 12: Software Engineering & Security

Adeel Bhutta, Joydeep Mitra and Mitch Wand
Khoury College of Computer Sciences

© 2025, released under CC BY-SA

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Module

* By the end of this module, you should be able to:

Define key terms relating to software/system security

Explain why it is important to consider non-functional
requirements like security during design
Explain 5 common vulnerabilities in web applications

and similar software systems, and describe some
common mitigations for each of them.

Explain the STRIDE Framework for Security by Design

Security: Basic Vocabulary (1)

 Security is a set of non-functional requirements
(sometimes called “CIA”):

e Confidentiality: is information disclosed to unauthorized
individuals?

 Integrity: is code or data tampered with?
* Availability: is the system accessible and usable?

Security: Basic Vocabulary (2)

* Asset: something of value that is the subject of a
security requirement

* Threat: a potential event that could compromise a
security requirement

* Vulnerability: a characteristic or flaw in system
design or implementation, or in the security
procedures, that, if exploited, could result in a
threat

Security: Basic Vocabulary (3)

* Exploit: a technique or method for exploiting a
vulnerability

e Attack: realization of a threat

* Mitigation: a technique for making an attack less
likely, more expensive, or less valuable to an
attacker.

e Security architecture: a set of mechanisms and
policies that we build into our system to mitigate
risks from threats

Security isn't always free

* |n software, as in the real world...

* You just moved to a new house, someone just
moved out of it. What do you do to protect you—
belongings/property?

* What are the assets that need protection? MR “!!!l l“l l‘

* residents, furniture, cash, your stuff

| ' I
' p |
ik e e
z o
Rl

‘%

i
* What are the vulnerabilities? *“ e
* doors, windows L 115 \

Security is about managing risk

* We need to make our software secure too!

* Increasing security might:
* Increase development & maintenance cost
* Increase infrastructure requirements
* Degrade performance

e But, if we are attacked, increasing security might
also:
e Decrease financial and intangible losses

Secure by Design is mantra of modern
software development

e Traditional Software Process Models do not bake
security into the software development lifecycle

 Security issues are usually an after-thought
* The modern approach to secure software
engineering is to consider security during the
design phase
* How?
» By starting with threat modeling

Threat modeling can help us analyze the
Issues

* What is being defended? Who do we trust? What parts _ y
of the system do we trust? Threat Modeling (&8

Threat

* What malicious actors exist and what attacks might
they employ? (Identification)

Threat

 What is the likelihood and impact of each threat? Asset O\
(Assessment) -

"~ Vulnerability

* What can we do in case of attack? (Countermeasures)
.Application

" Vulnerability

* How do we adapt to evolving risks? How do we update w
threat models regularly? (Review) ¢

Response Response

Two views of Security

1. Let’s look at Security from High Level first
(call it Project-Level Security)

2. Then we will look at Security from the App
level.

A Baseline Security Policy {at Project Level}

* Trust:

* Developers writing our code (at least for
the code they touch)

e Server running our code

* Popular dependencies that we use and M.
regularly update r an vs, Musle.A Wh; .
L] :s
* Don’t trust: Creates Head, eblower
| rﬁ.\.ﬂ E‘:H};”‘r-n.l‘c’ 4 acbes for Te‘gla
e Code running in browser leaked F,,-J;_'m:”'_“'}‘_;i: was fired after i s
=2 .7 = }"E-‘-_"{*”-t-ftt 11“(j D3] b S-'ilf:t"- r-.“-.--“f“](:‘fllr-ltn-:

assistance softway Sensitive dx

* Inputs from users a about drjy e,

A

e Other employees (employees should have
access only to the resources they need)

A Baseline Security Policy {at Project Level}

* Encrypt all data in transit, sensitive data at rest
e Use multi-factor authentication

* Use encapsulated zones/layers of security

 Different people have access to different resources
* Principle of Least Privilege

* Log everything! (employee data accesses/modifications)
(maybe)

* Do regular, automatic, off-site backups

* Bring in security experts early for riskier situations

5 major classes of vulnerabilities

* Vulnerability 1: Code that runs in an untrusted
environment

* Vulnerability 2: Untrusted Inputs

* Vulnerability 3: Bad authentication (of both sender
and receiver!)

* Vulnerability 4: Malicious software from the
software supply chain

* Vulnerability 5: Failure to apply security policy.

https://owasp.org/www-project-top-ten/

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

Vulnerability 1 Example: authentication code
in @ web application

function checkPassword(inputPassword:
string){
if(inputPassword === 'letmein'){

Front End return true;
}

return false;

Curses! Feiled Aqgain! A

Fix: Move code to back
end (duh!) Back End

Who would do such a silly thing?

New Messages

Want to hear something
mindblowing about gradescope?

If you set a test visibility policy, it
sends the data over to the client
and does the hiding **client-side**
using JS 19:06

Some intrepid students in my online
MS class figured this out and were
able to recover their hidden test
scores

Tests that we'd set visibility to after
the due date 19:07

15

Vulnerability 2: Data controlled by a user

flowing into our trusted codebase

HI, THIS 1S

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
COMPUTER TROUBLE.

K%W

OH, DEAR - DID HE
BREAK SOMETHING?

IN ﬂwmf /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-- 7

~ OH. YES. LITTLE
ROBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS

YEAR'S STUDENT RECORDS.
T HOPE YPURE HAPPRY.

{

AND I HOFE
~~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

https://xkcd.com/327/

https://xkcd.com/327/

Example: code injection

String query = "SELECT * FROM accounts WHERE

name="'" + request.getParameter(“name") + "'";
Parameter
Constructed Query Effect
name
Alice SELECT * FROM accounts Select a single
WHERE name=°‘Alice’; account

Alice O’Neal

SELECT * FROM accounts

WHERE name=‘Alice 0O’Neal’; SQL Error

5)

OR

C1)=(1

SELECT * FROM accounts
. Select all accounts

WHERE name=¢5’ OR ‘1°=°1";

* OWASP AO3:2021—Iniection@@PSz

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection
https://owasp.org/www-project-top-ten/2017/A1_2017-Injection
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A03_2021-Injection/

Bypassing airport security via SQL injection

(20241)

e "Known Crewmembers" can get to
the cockpit without inspection.

e Large airlines: Each airline runs its
own authorization system, but small
airlines rely on a vendor

 The authors found one such vendor
that had an SQL injection error

e Using the username of ' or '1'='1 and
password of ') OR MD5('1')=MD5('1,
we were able to login to FlyCASS as
an administrator of Air Transport
International!

To test that it was possible to add new employees, we created an
employee named Test TestOnly with a test photo of our choice
and authorized it for KCM and CASS access. We then used the
Query features to check if our new employee was authorized.
Unfortunately, our test user was now approved to use both KCM
and CASS:

<« & 2% flycass.com/ati/2cmd=querykcm/handle

ASS: Air Transport International

| Administration | Query | UserAdmin | Query[KCM] | LogQut |

Name ! Test TestOnly
Passport Number: : -
Passport Expires: | -

APPROVED

https://ian.sh/tsa

00P5!

18

https://ian.sh/tsa

A code injection attack (in Apache struts)
cost Equifax $1.4 Billion

@ English - Return to equifax.com»

2017 Cybersecurity Incident &
Important Consumer |pfarmatian

NEWS

Equifax Says Cybersecurity Breach Has Cost
$1.4 Billion

EMMA HURT = MAY 10, 2019 o o 9

_7

Need help? Contact Us

CVE-2017-5638 Detail
Current Description

The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 has incorrect exception handling and error-
message generation during file-upload attempts, which allows remote attackers to €xecute arbitrary commands via a

crafted Content-Type, Content-Disposition, or Content-Length HTTP header, as exploited in the wild in
March 2017 with a Content-Type header containing a #cmd= string.

Project-level mitigations for code injection
attacks

e Use tools like TSOA or swagger-codegen to
automatically generate safe code.

 Manually sanitize inputs to prevent them from being
executable

e Avoid unsafe query languages (e.g. SQL, LDAP,
language-specific languages like OGNL in java). Use
“safe” subsets instead.

* Avoid use of languages (like C or C++) that allow code
to construct arbitrary pointers or write beyond a valid

array index
 eval() in JS — executes a string as JS code

Vulnerability 3: Bad Authentication

O HTTP Request
[

HTTP Response

Server

client page Server
(“Avery”) (“Amazon”)

* How does Amazon know that this request is coming
from Avery?

* How does Avery know that this response is coming
from Amazon?

21

How does Amazon, Inc. know that this
request is coming from Avery?

e Password

* Establishes that the request is coming from someone
who knows Avery’s password

e 2-factor authentication is a way of linking Avery's
password to the real Avery.

* Something the real Avery has (physical key, bank card,
device token)

* Something the real Avery knows (name of first pet, etc.)

* Something the real Avery is (biometrics, address history,
etc.)

22

How does Avery know that this request is
coming from Amazon, Inc.?

* The answer depends on public-key cryptography (PKl)
* also called "asymmetric cryptography"

* "Cryptographic Failures" is #1 on the 2021 OWASP list of
Top 10 Web Application Security Risks

* PKI uses two keys: Public and Private

Encrypted with: |Who can encrypt? |Who can decrypt?

Private Key Only the owner of Anyone with the public key,
the private key I.e. everyone
Public Key Anyone Only the owner of the

corresponding private key

23

A message encrypted with a public key can only
be decrypted with the matching private key

Avery wants to send a confidential message to Blair, so
they encrypt it with Blair's public key

Plain text Public Key Encrypted Key Plain text
Message Message Message

—N —D

I _— +) —

— | o | ==
Only Blair has the Confidentiality
key to decrypt the achieved!
message! 7

Encrypt messages with the sender's private
key to ensure integrity

Avery wants to send a message, and they want whoever reads
to be confident that it was Avery who sent the message.

Plain text Private Key Encrypted Key Plain text
Message Message Message
—N —D
Avery Avery Avery
Only Avery had the Integrity
key this was locked achieved!
with!)

How does Avery get public key from Amazon
Inc.?

* Avery can rely on a third party, called a "certificate

authonty" (CA) To acquire a certificate,
FFFF * Amazon, Inc. must have shared
* The CA can endorse that a public key is held by a certain heir public key and some real-

real-world entity. world proof that they are

: : . . .com to the CA.
* The third party issues a certificate containing the amazon.com to e
Amazon's public key, encrypted with the CA's own
private key. @ SEEmTmITITITT .
 When our browser visits amazon.com, amazon.com
sends its certificate to our browser.

* Avery decrypts the certificate, using the CA's public key.
Avery now has the real public key of "Amazon Inc". =

* Every computer/browser is shipped with these root CA
public keys

- [
~) I

=] 3 =
g7 ol
-3 mn
g @ 3 = o
=~ Y 5 3
w el o
0 S &
g 32
amg 0 e 3 2
C

26

What happens if a CA is compromised, and
issues invalid certificates?

. Security
Security :
Comodo-gate hacker brags about Fuming Google tears Symantec a new
forged certificate exploit one over rogue SSL certs

Tiger-blooded Persian cracker boasts of mighty We'e gat just the thing for you, Symeniec ..

exploits By lain Thomson in San Francisco 29 Oct 2015 at 21:32 36 SHARE Y

00P5!

You can do this for your website for free

* letsencrypt.com

n Let’s Encrypt Documentation Get Help Donate - About Us - Languages @ v

A nonprofit Certificate Authority providing TLS
certificates to 300 million websites.

We were awarded the Levchin Prize for Real-World Cryptography! Learn more

GetStarted] [Sponsor

Project-level mitigations for access-control
threats

* Implement multi-factor authentication

* Make sure passwords are not weak, have not been
compromised.

* Apply per-record access control
* Principle of least privilege
* Harden pathways for account creation, password
reset.

e Use an SSO to handle login
* They might do it better than you can.

Vulnerability 4: Supply-Chain Attacks

* Do we trust our own code?
* Third-party code provides an attack vector

The software supply chain has many points
of weakness

g -~ B

Example: the eslint-scope
attack (2018)

* On 7/12/2018, a malicious version of
eslint-scope was published to npm.

* eslint-scope is a core element of eslint,
SO many many users were affected.

* Let’s analyze this...

@ ESLint Q Search the docs... User guide~ Devd

Postmortem for Malicious
Packages Published on July 12th,
2018

Summary

On July 12th, 2018, an attacker compromised the npm account of an ESLint maintainer
and published malicious versions of the eslint-scope and eslint-config—
eslint packages to the npm registry. Oninstallation, the malicious packages
downloaded and executed code from pastebin.com which sent the contents of the
user's .npmrc file to the attacker. An .npmrc file typically contains access tokens for
publishing to npm.

The malicious package versions are eslint-scope@3.7.2 and eslint-config—
eslint@5.0.2, both of which have been unpublished from npm. The pastebin.com
paste linked in these packages has also been taken down.

npm has revoked all access tokens issued before 2018-07-12 12:30 UTC. As a result, all
access tokens compromised by this attack should no longer be usable.

The maintainer whose account was compromised had reused their npm password on
several other sites and did not have two-factor authentication enabled on their npm
account.

We, the ESLint team, are sorry for allowing this to happen. We
hope that other package maintainers can learn from our
mistakes and improve the security of the whole npm ecosystem.

https://eslint.org/blog/2018/07/postmortem-for-

malicious-package-publishes/

33

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/

This incident leveraged several small
security failures

* An eslint-scope developer used their same password on
another site.

* The other site did not use 2FA
* Password was leaked from the other site.
 Attacker created malicious version of eslint-scope

 Many users did not use package-lock.json, so their
packages automatically installed the new (evil) version.

* The malicious version sent copies of the user’s .npmrc
to the attacker. This file typically contains user tokens.

e Estimated 4500 tokens were leaked and needed to be
revoked.

34

A 2021 NCSU/Microsoft found that many of the
top 1% of npm packages had vulnerabilities

* Package inactive or s s 2 1108 o
e ackages packages maintainers omains —
deprecated, yet still in use

l packages
: Maintainer Domain Purchése Take over
popular Inactive . . domain and
Email track in npm
packages packages : alter the
address registrar account
MX record

* At least one maintainer with an inactive (purchasable) email
domain

Access to 891

e No active maintainers

 Too many maintainers or contributors to make effective
maintenance or code control

* Maintainers are maintaining too many packages
* Many statistics/combinations: see the paper for details.

“What are Weak Links in the npm Supply Chain?” By: Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan
Murphy, Chandra Maddila, Laurie Williams https://arxiv.org/abs/2112.10165

https://arxiv.org/abs/2112.10165

Your suppliers' risks are your risks

e "Known Crewmembers" can get to
the COCkpit Without inspection. To test that it was possible to add new employees, we created an

employee named Test TestOnly with a test photo of our choice
and authorized it for KCM and CASS access. We then used the
Query features to check if our new employee was authorized.
Unfortunately, our test user was now approved to use both KCM
and CASS:

i Ty 2% flycass.com/ati/?2cmd=gquerykcm/handle

* The authors found one such vendor T —
. . . | Administration | Query | UserAdmin | Query[KCM] [LogQut |
that had an SQL injection error

* Using the username of ' or '1'="1 and @@PSV
)

password of ') OR MD5('1')=MD5('1,

we were able to login to FIyCASS as o
an administrator of Air Transport i
International! AFFROVED

https://ian.sh/tsa

37

https://ian.sh/tsa

Project-level Threat Mitigations

* External dependencies

. Ahudit all dependencies and their updates before applying
them

* In-house code

* Require developers to sign code before committing, require
2FA for signing keys, rotate signing keys regularly

* Build process

* Audit build software, use trusted compilers and build chains
* Distribution process

 Sign all packages, protect signing keys
* Operating environment

* |solate applications in containers or VMs

Vulnerability #5: A security architecture
must include a security culture

Getting security right is about people as well as software

* Question: How do you get your developers to do all this?

* Answer: Security architecture is a set of mechanisms and
policies that we build into our system to mitigate risks
from threats

Example mechanism: secret detection

e Recall: SSL only talks about
public/private keys.

* Applications may have many other
secret values (e.g. access tokens
for other services)

* Tools like GitGuardian
automatically detect secrets in
repositories

Keep secrets out
of your source code

ENCRYPTION KEYS AND OTHER SENSITIVE DATAIN REAL TIME

I | v

B/S/H/ e \.’ bbdegrees

UYL
@ SafetyCulture

Scan. Detect. Remediate.

your software development lifecycle with

enterprise-grade secrets detection. Eliminate blind spots
with our automate d, battle-teste d detect ion engine.

40

Mechanisms aren’t enough: Do developers
keep secret keys secret?

* Industrial study of secret detection tool in a large software services
company with over 1,000 developers, operating for over 10 years

* What do developers do when they get warnings of secrets in
repository?
* 49% remove the secrets; 51% bypass the warning

* Why do developers bypass warnings?

* 44% report false positives, 6% are already exposed secrets, remaining are
“development-related” reasons, e.g. “not a production credential” or “no

significant security value” s it a management
problem or a tool

problem?
“Why secret detection tools are not enough: It’s not just about false positives - An industrial case study”
Md Rayhanur Rahman, Nasif Imtiaz, Margaret-Anne Storey & Laurie Williams https://link.springer.com/article/10.1007/s10664-021-10109-y

https://link.springer.com/article/10.1007/s10664-021-10109-y
https://link.springer.com/article/10.1007/s10664-021-10109-y
https://link.springer.com/article/10.1007/s10664-021-10109-y
https://link.springer.com/article/10.1007/s10664-021-10109-y
https://link.springer.com/article/10.1007/s10664-021-10109-y
https://link.springer.com/article/10.1007/s10664-021-10109-y
https://link.springer.com/article/10.1007/s10664-021-10109-y

Elements of a security culture

* Make security a regular part of the process

* Include security tools as part of the build/release
process

* Tools may have false positives and false negatives

* Educate developers about when how to recognize
positives that look false, but aren’t

* Include security review as regular part of code review

42

Wow! That’s a lot of High-level stuff

Let’s pause a minute

Two Views of Security

1. Let’s call it Security from High Level first
(call it Project-Level Security)

2. Now, let’s look at Security from the App
level.

A Baseline Threat Model {at App Level}

e Concentrate on technical risks rather than broad threats.
* Are there any missing controls?
e Is there a data flow that can be abused?

* Many technical threats combine to create broad threats.

* Focusing on vague nation-state attacks and zero-day exploits
can overshadow essential application security details.

A Baseline Security Policy {at App Level}

* Collaborate with stakeholders to understand security needs

* Frequent and small iterations
 Start with the thinnest slice of the system. e.g.,
e User registration flow
* A microservice and it’s collaborating services
* Current iteration
* Repeat and refine them.

* Defining a threat model upfront for the entire system is
counter productive.

Basic Structure of Threat Modeling in Agile

An effective threat modeling session must deal with the three primary questions

Activity Question Outcome
Explain and What are you building? A technical diagram
explore

Brainstorm threats

Prioritize and fix

What can go wrong?

What are you going to do?

A list of technical
threats

Add prioritized fixes
to backlog (todo list)

STRIDE Framework can help identify

Common Threats

* The STRIDE framework is useful to reason about

potential threats.
* Spoofing
* Tampering
* Repudiation
* Information Disclosure
* Denial of Service
* Elevation of Privilege

You will learn more about
this in the activity posted
on the module page!

48

Let’'s Walk through an Example

* Imagine working on this user story

“As a customer, | neeo a page wheve | can see my customer
details so | can confirm they are correct’

* Let’s work through our questions:
 What are you building?
* What can go wrong?
 What are you going to do?

49

What are we building?

e Use a sketch to represent
* relevant components

e users that interact with a
component

* collaborative components

A

Custorer

|
Custonef

]O\@I\K’&")

T)g’(m.lf UL

L

?rav{AeC

|

e

Customer
Deta (.l5 BEF

O

|

e

Cu stones
Sern?

o

|

50

What are we building?

* Explicitly model data flows in

l
the sketch. [nlemet (.
| denkt
e Data flows help show where \ | ?r v{A\Zr | _
. . —_—1 | ;6
requests originate (source). Costomer | T Custoner
’__? Qekarls UL \ " Sern@?

e Label networks and show - cstore —

boundaries between them. Costomer RS

L~

51

What are we building?

* |[dentify and show assets e.g.,
personally identifiable

(
_ . [ndemet -
information (PII), your gy
application has access to. 1 1 [Frevdes | -
Customef \ T C‘“ﬁ"’””‘\
———ﬁ Netails UL . Sern&@
& \b— \(\ Customér T
ot L [Detarls BEF

52

What can go wrong?

* Using the STRIDE model, we
should identify possible
threats that can happen on
each flow.

* Customer -> Ul

e Customer -> ldentity
Service

e Ul -> BFF
* BFF -> Customer Service

creds

l
[f\JtﬁfV\Ut [
[ld\ef\('.\.*j
- [Provider
CUS‘I'O"\CF \ T
—7 Detarls UL ~\r\$‘ —
Customer
\ :
Custorer Detads BFF

|
l

-y

PII

Co stoner
Sernc?

53

What can go wrong?

* Using the STRIDE model, we
should identify possible
threats that can happen on
each flow.

[nlemet

XSS attaclfe
* Customer -> Ul
. . —2
e Customer -> Identity Service
e Ul->BFF
CustomMer

e BFF -> Customer Service

Spoofing due to

SpoofiFg
due to\ No
2-factor 1A o creds
authen&icat e j
= [Providel
Custonmef
: \
Detarls UL \\T\~j‘
v Customer
* Spoofing due fo .
Absent/weak Detadls BEF

identity toker —

validation

* Tampering du

to

injection attacks
* Spoofing due to
Misconfigured TLS
configuration
* Privilege of

escalation

due to

incorrect access
control logic

e DOS due to

absence

of rate limiting

Cu stones
Serwcz

* Spoofing due to

Absent/weak
authentication
(server-to-server)

* Repudiation due to

not logging of
caller identity

54

What are you going to do?

* Add Highest Priority threats to backlog (as user stories or
conditions of satisfaction)

Glven the user ts logoed tn
When they request to view thelr profile page And they have a valid token

Thew thelr profile page Ls displayed

Glven the user Ls Logoed tn

When they request to view thelr profile page
But they do not have a valid token

Thew they arve asked to login or stgnup

55

What are you going to do?

* Prioritize and Fix
* Aim to address manageable number of threats (e.g., 3)
* Examples of Work Breakdown:

* Prevent authorization bypass when accessing an API by
creating session tokens for the server

* Prevent XSS attack via user input by sanitizing all inputs

* Prevent Denial of service for server from the internet by
using a rate limit

* Repeat and refine!

A Guide to Threat Modeling by Jim Gumbley: https://martinfowler.com/articles/agile-threat-modelling.html|

56

https://martinfowler.com/articles/agile-threat-modelling.html
https://martinfowler.com/articles/agile-threat-modelling.html
https://martinfowler.com/articles/agile-threat-modelling.html
https://martinfowler.com/articles/agile-threat-modelling.html
https://martinfowler.com/articles/agile-threat-modelling.html

Learning Objectives for this Module

* You should now be able to:

Define key terms relating to software/system security
Explain why it is important to consider non-functional
requirements like security during design

Explain 5 common vulnerabilities in web applications
and similar software systems, and describe some
common mitigations for each of them.

Explain the STRIDE Framework for Security by Design

	CS 4530: Fundamentals of Software Engineering

Module 12: Software Engineering & Security
	Learning Objectives for this Module
	Security: Basic Vocabulary (1)
	Security: Basic Vocabulary (2)
	Security: Basic Vocabulary (3)
	Security isn't always free
	Security is about managing risk
	Secure by Design is mantra of modern software development
	Threat modeling can help us analyze the issues
	Two views of Security
	A Baseline Security Policy {at Project Level}
	A Baseline Security Policy {at Project Level}
	5 major classes of vulnerabilities
	Vulnerability 1 Example: authentication code in a web application
	Who would do such a silly thing?
	Vulnerability 2: Data controlled by a user flowing into our trusted codebase
	Example: code injection
	Bypassing airport security via SQL injection (2024!)
	A code injection attack (in Apache struts) cost Equifax $1.4 Billion
	Project-level mitigations for code injection attacks
	Vulnerability 3: Bad Authentication
	How does Amazon, Inc. know that this request is coming from Avery?
	How does Avery know that this request is coming from Amazon, Inc.?
	A message encrypted with a public key can only be decrypted with the matching private key
	Encrypt messages with the sender's private key to ensure integrity
	How does Avery get public key from Amazon, Inc.?
	What happens if a CA is compromised, and issues invalid certificates?
	You can do this for your website for free
	Project-level mitigations for access-control threats
	Vulnerability 4: Supply-Chain Attacks
	The software supply chain has many points of weakness
	Example: the eslint-scope attack (2018)
	This incident leveraged several small security failures
	A 2021 NCSU/Microsoft found that many of the top 1% of npm packages had vulnerabilities
	Your suppliers' risks are your risks
	Project-level Threat Mitigations
	Vulnerability #5: A security architecture must include a security culture
	Example mechanism: secret detection
	Mechanisms aren’t enough: Do developers keep secret keys secret?
	Elements of a security culture
	Slide Number 43
	Two Views of Security
	A Baseline Threat Model {at App Level}
	A Baseline Security Policy {at App Level}
	Basic Structure of Threat Modeling in Agile
	STRIDE Framework can help identify Common Threats
	Let’s Walk through an Example
	What are we building?
	What are we building?
	What are we building?
	What can go wrong?
	What can go wrong?
	What are you going to do?
	What are you going to do?
	Learning Objectives for this Module

