
CS 4530: Fundamentals of Software Engineering

Module 12: Software Engineering & Security
Adeel Bhutta, Joydeep Mitra and Mitch Wand
Khoury College of Computer Sciences

© 2025, released under CC BY-SA

1

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Module
• By the end of this module, you should be able to:

• Define key terms relating to software/system security
• Explain why it is important to consider non-functional

requirements like security during design
• Explain 5 common vulnerabilities in web applications

and similar software systems, and describe some
common mitigations for each of them.

• Explain the STRIDE Framework for Security by Design

Security: Basic Vocabulary (1)
• Security is a set of non-functional requirements

(sometimes called “CIA”):
• Confidentiality: is information disclosed to unauthorized

individuals?
• Integrity: is code or data tampered with?
• Availability: is the system accessible and usable?

3

Security: Basic Vocabulary (2)
• Asset: something of value that is the subject of a

security requirement
• Threat: a potential event that could compromise a

security requirement
• Vulnerability: a characteristic or flaw in system

design or implementation, or in the security
procedures, that, if exploited, could result in a
threat

4

Security: Basic Vocabulary (3)
• Exploit: a technique or method for exploiting a

vulnerability
• Attack: realization of a threat
• Mitigation: a technique for making an attack less

likely, more expensive, or less valuable to an
attacker.

• Security architecture: a set of mechanisms and
policies that we build into our system to mitigate
risks from threats

5

Security isn't always free
• In software, as in the real world…
• You just moved to a new house, someone just

moved out of it. What do you do to protect your
belongings/property?

• What are the assets that need protection?
• residents, furniture, cash, your stuff

• What are the vulnerabilities?
• doors, windows

Security is about managing risk
• We need to make our software secure too!
• Increasing security might:

• Increase development & maintenance cost
• Increase infrastructure requirements
• Degrade performance

• But, if we are attacked, increasing security might
also:

• Decrease financial and intangible losses

Secure by Design is mantra of modern
software development
• Traditional Software Process Models do not bake

security into the software development lifecycle
• Security issues are usually an after-thought

• The modern approach to secure software
engineering is to consider security during the
design phase

• How?
 By starting with threat modeling

8

Threat modeling can help us analyze the
issues
• What is being defended? Who do we trust? What parts

of the system do we trust?

• What malicious actors exist and what attacks might
they employ? (Identification)

• What is the likelihood and impact of each threat?
(Assessment)

• What can we do in case of attack? (Countermeasures)

• How do we adapt to evolving risks? How do we update
threat models regularly? (Review)

Two views of Security
1. Let’s look at Security from High Level first

(call it Project-Level Security)
2. Then we will look at Security from the App

level.

A Baseline Security Policy {at Project Level}
• Trust:

• Developers writing our code (at least for
the code they touch)

• Server running our code
• Popular dependencies that we use and

regularly update
• Don’t trust:

• Code running in browser
• Inputs from users
• Other employees (employees should have

access only to the resources they need)

A Baseline Security Policy {at Project Level}

• Encrypt all data in transit, sensitive data at rest
• Use multi-factor authentication
• Use encapsulated zones/layers of security

• Different people have access to different resources
• Principle of Least Privilege

• Log everything! (employee data accesses/modifications)
(maybe)

• Do regular, automatic, off-site backups
• Bring in security experts early for riskier situations

5 major classes of vulnerabilities
• Vulnerability 1: Code that runs in an untrusted

environment
• Vulnerability 2: Untrusted Inputs
• Vulnerability 3: Bad authentication (of both sender

and receiver!)
• Vulnerability 4: Malicious software from the

software supply chain
• Vulnerability 5: Failure to apply security policy.

https://owasp.org/www-project-top-ten/

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

We control this

User controls this

Vulnerability 1 Example: authentication code
in a web application

function checkPassword(inputPassword:
string){

if(inputPassword === 'letmein'){
return true;

}
return false;

}

Front End

Trust boundary

Fix: Move code to back
end (duh!)

Curses! Foiled Again!

Back End

Who would do such a silly thing?

15

Vulnerability 2: Data controlled by a user
flowing into our trusted codebase

https://xkcd.com/327/

https://xkcd.com/327/

Example: code injection

• OWASP A03:2021-Injection

String query = "SELECT * FROM accounts WHERE
name='" + request.getParameter(“name") + "'";

Parameter
name Constructed Query Effect

Alice SELECT * FROM accounts
WHERE name=‘Alice’;

Select a single
account

Alice O’Neal SELECT * FROM accounts
WHERE name=‘Alice O’Neal’; SQL Error

5’ OR ‘1’=‘1 SELECT * FROM accounts
WHERE name=‘5’ OR ‘1’=‘1’; Select all accounts

OOPS!

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection
https://owasp.org/www-project-top-ten/2017/A1_2017-Injection
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A03_2021-Injection/

Bypassing airport security via SQL injection
(2024!)
• "Known Crewmembers" can get to

the cockpit without inspection.
• Large airlines: Each airline runs its

own authorization system, but small
airlines rely on a vendor

• The authors found one such vendor
that had an SQL injection error

• Using the username of ' or '1'='1 and
password of ') OR MD5('1')=MD5('1,
we were able to login to FlyCASS as
an administrator of Air Transport
International!

18

OOPS!

https://ian.sh/tsa

https://ian.sh/tsa

A code injection attack (in Apache struts)
cost Equifax $1.4 Billion

CVE-2017-5638 Detail
Current Description
The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 has incorrect exception handling and error-
message generation during file-upload attempts, which allows remote attackers to execute arbitrary commands via a
crafted Content-Type, Content-Disposition, or Content-Length HTTP header, as exploited in the wild in
March 2017 with a Content-Type header containing a #cmd= string.

Project-level mitigations for code injection
attacks
• Use tools like TSOA or swagger-codegen to

automatically generate safe code.
• Manually sanitize inputs to prevent them from being

executable
• Avoid unsafe query languages (e.g. SQL, LDAP,

language-specific languages like OGNL in java). Use
“safe” subsets instead.

• Avoid use of languages (like C or C++) that allow code
to construct arbitrary pointers or write beyond a valid
array index

• eval() in JS – executes a string as JS code

Vulnerability 3: Bad Authentication

• How does Amazon know that this request is coming
from Avery?

• How does Avery know that this response is coming
from Amazon? 21

client page
(“Avery”)

Server
(“Amazon”)

HTTP Request

HTTP Response Server

How does Amazon, Inc. know that this
request is coming from Avery?
• Password

• Establishes that the request is coming from someone
who knows Avery’s password

• 2-factor authentication is a way of linking Avery's
password to the real Avery.

• Something the real Avery has (physical key, bank card,
device token)

• Something the real Avery knows (name of first pet, etc.)
• Something the real Avery is (biometrics, address history,

etc.)

22

How does Avery know that this request is
coming from Amazon, Inc.?
• The answer depends on public-key cryptography (PKI)

• also called "asymmetric cryptography"

• "Cryptographic Failures" is #1 on the 2021 OWASP list of
Top 10 Web Application Security Risks

• PKI uses two keys: Public and Private

23

Encrypted with: Who can encrypt? Who can decrypt?
Private Key Only the owner of

the private key
Anyone with the public key,
i.e. everyone

Public Key Anyone Only the owner of the
corresponding private key

A message encrypted with a public key can only
be decrypted with the matching private key

24

Public Key Private KeyPlain text
Message

Encrypted
Message

Plain text
Message

Blair Blair Blair

Confidentiality
achieved!

Only Blair has the
key to decrypt the
message!

Avery wants to send a confidential message to Blair, so
they encrypt it with Blair's public key

Encrypt messages with the sender's private
key to ensure integrity

25

Private Key Public KeyPlain text
Message

Encrypted
Message

Plain text
Message

AveryAvery

Integrity
achieved!

Only Avery had the
key this was locked
with!

Avery

Avery wants to send a message, and they want whoever reads
to be confident that it was Avery who sent the message.

How does Avery get public key from Amazon,
Inc.?
• Avery can rely on a third party, called a "certificate

authority" (CA).
• The CA can endorse that a public key is held by a certain

real-world entity.
• The third party issues a certificate containing the

Amazon's public key, encrypted with the CA's own
private key.

• When our browser visits amazon.com, amazon.com
sends its certificate to our browser.

• Avery decrypts the certificate, using the CA's public key.
Avery now has the real public key of "Amazon Inc".

• Every computer/browser is shipped with these root CA
public keys

26

To acquire a certificate,
Amazon, Inc. must have shared
their public key and some real-
world proof that they are
amazon.com to the CA.

What happens if a CA is compromised, and
issues invalid certificates?

OOPS!

You can do this for your website for free
• letsencrypt.com

Project-level mitigations for access-control
threats
• Implement multi-factor authentication
• Make sure passwords are not weak, have not been

compromised.
• Apply per-record access control

• Principle of least privilege

• Harden pathways for account creation, password
reset.

• Use an SSO to handle login
• They might do it better than you can.

Vulnerability 4: Supply-Chain Attacks
• Do we trust our own code?
• Third-party code provides an attack vector

The software supply chain has many points
of weakness

In-house code

External
dependencies

Build process Operating
environment

Distribution
process

(including
updates)

Example: the eslint-scope
attack (2018)
• On 7/12/2018, a malicious version of

eslint-scope was published to npm.
• eslint-scope is a core element of eslint,

so many many users were affected.
• Let’s analyze this…

33
https://eslint.org/blog/2018/07/postmortem-for-
malicious-package-publishes/

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/

This incident leveraged several small
security failures
• An eslint-scope developer used their same password on

another site.
• The other site did not use 2FA
• Password was leaked from the other site.
• Attacker created malicious version of eslint-scope
• Many users did not use package-lock.json, so their

packages automatically installed the new (evil) version.
• The malicious version sent copies of the user’s .npmrc

to the attacker. This file typically contains user tokens.
• Estimated 4500 tokens were leaked and needed to be

revoked.

34

A 2021 NCSU/Microsoft found that many of the
top 1% of npm packages had vulnerabilities

• Package inactive or
deprecated, yet still in use

• No active maintainers

“What are Weak Links in the npm Supply Chain?” By: Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan
Murphy, Chandra Maddila, Laurie Williams https://arxiv.org/abs/2112.10165

• At least one maintainer with an inactive (purchasable) email
domain

• Too many maintainers or contributors to make effective
maintenance or code control

• Maintainers are maintaining too many packages
• Many statistics/combinations: see the paper for details.

https://arxiv.org/abs/2112.10165

Your suppliers' risks are your risks
• "Known Crewmembers" can get to

the cockpit without inspection.
• Large airlines: Each airline runs its

own authorization system, but small
airlines rely on a vendor

• The authors found one such vendor
that had an SQL injection error

• Using the username of ' or '1'='1 and
password of ') OR MD5('1')=MD5('1,
we were able to login to FlyCASS as
an administrator of Air Transport
International!

37

OOPS!

https://ian.sh/tsa

https://ian.sh/tsa

Project-level Threat Mitigations
• External dependencies

• Audit all dependencies and their updates before applying
them

• In-house code
• Require developers to sign code before committing, require

2FA for signing keys, rotate signing keys regularly
• Build process

• Audit build software, use trusted compilers and build chains
• Distribution process

• Sign all packages, protect signing keys
• Operating environment

• Isolate applications in containers or VMs

Vulnerability #5: A security architecture
must include a security culture
Getting security right is about people as well as software

• Question: How do you get your developers to do all this?
• Answer: Security architecture is a set of mechanisms and

policies that we build into our system to mitigate risks
from threats

Example mechanism: secret detection
• Recall: SSL only talks about

public/private keys.
• Applications may have many other

secret values (e.g. access tokens
for other services)

• Tools like GitGuardian
automatically detect secrets in
repositories

40

Mechanisms aren’t enough: Do developers
keep secret keys secret?
• Industrial study of secret detection tool in a large software services

company with over 1,000 developers, operating for over 10 years
• What do developers do when they get warnings of secrets in

repository?
• 49% remove the secrets; 51% bypass the warning

• Why do developers bypass warnings?
• 44% report false positives, 6% are already exposed secrets, remaining are

“development-related” reasons, e.g. “not a production credential” or “no
significant security value”

“Why secret detection tools are not enough: It’s not just about false positives - An industrial case study”
Md Rayhanur Rahman, Nasif Imtiaz, Margaret-Anne Storey & Laurie Williams https://link.springer.com/article/10.1007/s10664-021-10109-y

Is it a management
problem or a tool

problem?

https://link.springer.com/article/10.1007/s10664-021-10109-y
https://link.springer.com/article/10.1007/s10664-021-10109-y
https://link.springer.com/article/10.1007/s10664-021-10109-y
https://link.springer.com/article/10.1007/s10664-021-10109-y
https://link.springer.com/article/10.1007/s10664-021-10109-y
https://link.springer.com/article/10.1007/s10664-021-10109-y
https://link.springer.com/article/10.1007/s10664-021-10109-y

Elements of a security culture
• Make security a regular part of the process

• Include security tools as part of the build/release
process

• Tools may have false positives and false negatives
• Educate developers about when how to recognize

positives that look false, but aren’t
• Include security review as regular part of code review

42

Wow! That’s a lot of High-level stuff

Let’s pause a minute …..

Two Views of Security
1. Let’s call it Security from High Level first

(call it Project-Level Security)
2. Now, let’s look at Security from the App

level.

A Baseline Threat Model {at App Level}
• Concentrate on technical risks rather than broad threats.

• Are there any missing controls?
• Is there a data flow that can be abused?

• Many technical threats combine to create broad threats.
• Focusing on vague nation-state attacks and zero-day exploits

can overshadow essential application security details.

A Baseline Security Policy {at App Level}

• Collaborate with stakeholders to understand security needs
• Frequent and small iterations

• Start with the thinnest slice of the system. e.g.,
• User registration flow
• A microservice and it’s collaborating services
• Current iteration

• Repeat and refine them.
• Defining a threat model upfront for the entire system is

counter productive.

Basic Structure of Threat Modeling in Agile

An effective threat modeling session must deal with the three primary questions

Activity Question Outcome

Explain and
explore

What are you building? A technical diagram

Brainstorm threats What can go wrong? A list of technical
threats

Prioritize and fix What are you going to do? Add prioritized fixes
to backlog (todo list)

STRIDE Framework can help identify
Common Threats
• The STRIDE framework is useful to reason about

potential threats.
• Spoofing
• Tampering
• Repudiation
• Information Disclosure
• Denial of Service
• Elevation of Privilege

48

You will learn more about
this in the activity posted

on the module page!

Let’s Walk through an Example

“As a customer, I need a page where I can see my customer
details so I can confirm they are correct”

49

• Imagine working on this user story

• Let’s work through our questions:
• What are you building?
• What can go wrong?
• What are you going to do?

What are we building?
• Use a sketch to represent

• relevant components
• users that interact with a

component
• collaborative components

50

What are we building?
• Explicitly model data flows in

the sketch.
• Data flows help show where

requests originate (source).
• Label networks and show

boundaries between them.

51

What are we building?
• Identify and show assets e.g.,

personally identifiable
information (PII), your
application has access to.

52

What can go wrong?
• Using the STRIDE model, we

should identify possible
threats that can happen on
each flow.

• Customer -> UI
• Customer -> Identity

Service
• UI -> BFF
• BFF -> Customer Service

53

What can go wrong?
• Using the STRIDE model, we

should identify possible
threats that can happen on
each flow.

• Customer -> UI
• Customer -> Identity Service
• UI -> BFF
• BFF -> Customer Service

54

Spoofing due to
XSS attack

Spoofing
due to No
2-factor
authenticat
ion

• Spoofing due to
Absent/weak
identity token
validation

• Tampering due to
injection attacks

• Spoofing due to
Misconfigured TLS
configuration

• Privilege of
escalation due to
incorrect access
control logic

• DOS due to absence
of rate limiting

• Spoofing due to
Absent/weak
authentication
(server-to-server)

• Repudiation due to
not logging of
caller identity

What are you going to do?
• Add Highest Priority threats to backlog (as user stories or

conditions of satisfaction)

55

Given the user is logged in
When they request to view their profile page And they have a valid token
Then their profile page is displayed

Given the user is logged in
When they request to view their profile page
But they do not have a valid token
Then they are asked to login or signup

What are you going to do?
• Prioritize and Fix

• Aim to address manageable number of threats (e.g., 3)
• Examples of Work Breakdown:

• Prevent authorization bypass when accessing an API by
creating session tokens for the server

• Prevent XSS attack via user input by sanitizing all inputs
• Prevent Denial of service for server from the internet by

using a rate limit

• Repeat and refine!

56

A Guide to Threat Modeling by Jim Gumbley: https://martinfowler.com/articles/agile-threat-modelling.html

https://martinfowler.com/articles/agile-threat-modelling.html
https://martinfowler.com/articles/agile-threat-modelling.html
https://martinfowler.com/articles/agile-threat-modelling.html
https://martinfowler.com/articles/agile-threat-modelling.html
https://martinfowler.com/articles/agile-threat-modelling.html

Learning Objectives for this Module
• You should now be able to:

• Define key terms relating to software/system security
• Explain why it is important to consider non-functional

requirements like security during design
• Explain 5 common vulnerabilities in web applications

and similar software systems, and describe some
common mitigations for each of them.

• Explain the STRIDE Framework for Security by Design

	CS 4530: Fundamentals of Software Engineering

Module 12: Software Engineering & Security
	Learning Objectives for this Module
	Security: Basic Vocabulary (1)
	Security: Basic Vocabulary (2)
	Security: Basic Vocabulary (3)
	Security isn't always free
	Security is about managing risk
	Secure by Design is mantra of modern software development
	Threat modeling can help us analyze the issues
	Two views of Security
	A Baseline Security Policy {at Project Level}
	A Baseline Security Policy {at Project Level}
	5 major classes of vulnerabilities
	Vulnerability 1 Example: authentication code in a web application
	Who would do such a silly thing?
	Vulnerability 2: Data controlled by a user flowing into our trusted codebase
	Example: code injection
	Bypassing airport security via SQL injection (2024!)
	A code injection attack (in Apache struts) cost Equifax $1.4 Billion
	Project-level mitigations for code injection attacks
	Vulnerability 3: Bad Authentication
	How does Amazon, Inc. know that this request is coming from Avery?
	How does Avery know that this request is coming from Amazon, Inc.?
	A message encrypted with a public key can only be decrypted with the matching private key
	Encrypt messages with the sender's private key to ensure integrity
	How does Avery get public key from Amazon, Inc.?
	What happens if a CA is compromised, and issues invalid certificates?
	You can do this for your website for free
	Project-level mitigations for access-control threats
	Vulnerability 4: Supply-Chain Attacks
	The software supply chain has many points of weakness
	Example: the eslint-scope attack (2018)
	This incident leveraged several small security failures
	A 2021 NCSU/Microsoft found that many of the top 1% of npm packages had vulnerabilities
	Your suppliers' risks are your risks
	Project-level Threat Mitigations
	Vulnerability #5: A security architecture must include a security culture
	Example mechanism: secret detection
	Mechanisms aren’t enough: Do developers keep secret keys secret?
	Elements of a security culture
	Slide Number 43
	Two Views of Security
	A Baseline Threat Model {at App Level}
	A Baseline Security Policy {at App Level}
	Basic Structure of Threat Modeling in Agile
	STRIDE Framework can help identify Common Threats
	Let’s Walk through an Example
	What are we building?
	What are we building?
	What are we building?
	What can go wrong?
	What can go wrong?
	What are you going to do?
	What are you going to do?
	Learning Objectives for this Module

